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Convective instability of ferromagnetic fluids 

By B. A. FINLAYSON 
Department of Chemical Engineering, University of Washington 

(Received 28 February 1969 and in revised form 8 September 1969) 

Convective instability of a ferromagnetic fluid is predicted for a fluid layer 
heated from below in the presence of a uniform vertical magnetic field. Convec- 
tion is caused by a spatial variation in magnetization which is induced when the 
magnetization of the fluid is a function of temperature and a temperature gradient 
is established across the layer. A linearized convective instability analysis pre- 
dicts the critical temperature gradient when only the magnetic mechanism is 
important, as well as when both the magnetic and buoyancy mechanisms are 
operative. The magnetic mechanism predominates over the buoyancy mechanism 
in fluid layers about 1 mm thick. For a fluid layer contained between two free 
boundaries which are constrained flat, the exact solution is derived for somepara- 
meter values and oscillatory instability cannot occur. For rigid boundaries, 
approximate solutions for stationary instability are derived by the Galerkin 
method for a wide range of parameter values. It is shown that in this case the 
Galerkin method yields an eigenvalue which is stationary to small changes in the 
trial functions, because the Galerkin method is equivalent to an adjoint varia- 
tional principle. 

1. Introduction 
Thermo-mechanical interactions in fluids make possible convection induced 

by externally applied temperature gradients. The most familiar example of 
thermo-mechanical interaction is buoyancy-induced convection, in which case 
the seat of the driving force resides in the body force, gravity, and the density 
is a function of temperature. Convection can also be induced by thermo- 
mechanical interactions arising through the stress tensor, such as surface- 
tension-driven convection, provided the surface tension is a function of 
temperature. While this mechanism occurs only at a free surface, a thermo- 
mechanical interaction arising through the stress tensor and acting throughout 
the fluid was predicted by Finlayson & Scriven (1969) after making formal 
postulates about the constitutive relation for the stress tensor and its de- 
pendence on temperature gradients (and concentration gradients). Convective 
instability analyses are useful in all three cases to predict the critical temperature 
gradient above which motion occurs. We study here a thermo-mechanical 
interaction which is predicted for a ferromagnetic fluid in the presence of a 
uniform, vertical magnetic field provided the magnetization is a function of 
temperature and a temperature gradient is established across a fluid layer. 
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The mechanism is similar to that predicted by Poots (1963), Yeung & Yu (1968) 
and Turnbull (1969), for a heated, dielectric fluid in the presence of an electric 
field. Only the last author, however, allowed the electric field to  be influenced by 
the motion. Turnbull solved for the combined electric and buoyancy mechanisms 
and assumed the dielectric constant depended only on temperature, except 
that dependence on electric field was allowed in the quiescent state. Here we 
solve for the combined magnetic and buoyancy mechanisms, as well as the 
magnetic mechanism alone (applicable to thin fluid layers), and allow an equation 
of state which permits the magnetization to depend on both temperature and 
magnetic field. 

Ferromagnetic fluids are formed by suspending submicron sized particles 
of magnetite in a carrier medium such as kerosene, heptane or water (Papell 
& Faber 1966, 1968; Cowley & Rosensweig 1967; Rosensweig, private com- 
munication). To prevent the particles from agglomerating in the presence of a 
magnetic field they are surrounded by a surfactant such as oleic acid. The 
combination of the short mnge repulsion due to the surfactant and the thermal 
agitation yields a material which behaves as a continuum (Papell & Faber 1966) 
and can experience forces due to magnetic polarization. The fluids are usually 
good insulators and forces due to interaction of magnetic fields with currents of 
free charge, such as found in magnetohydrodynamics, are negligible (Cowley & 
Rosensweig 1967). The presence of a ferromagnetic fluid can distort an external 
magnetic field if magnetic interaction (dipole-dipole) takes place, but this is 
negligible for small particle concentrations (Bean 1955), as is assumed here. 
Experience also suggests that hysteresis is unlikely in the fluids (Cowley & 
Rosensweig 1967), except for rapidly changing external magnetic fields (see 
Moskowitz & Rosensweig 1967), and here we assume that the magnetic field 
H and magnetic induction B are parallel. 

We study the convective instability of a ferromagnetic fluid when placed in a 
fluid layer which is heated from below when in the presence of a vertical magnetic 
field. We analyze the instability both in the presence and absence of a vertical 
body force (gravity). When buoyancy forces are negligible, as is the case for 
thin fluid layers, the external magnetic field induces a magnetization in the 
ferromagnetic fluid. In  the magnetic equation of state the magnetization is a 
function of both magnetic field and temperature, so that the applied temperature 
gradient causes a spatial variation in the magnetization, which is the driving 
force causing the convection. For small temperature gradients the magnetic 
forces induced by the temperature gradient cannot overcome the viscous and 
thermal dissipation and the layer remains quiescent. When the temperature 
gradient is sufficiently large, motion occurs. When both buoyancy and magnetic 
forces must be included, the magnetic mechanism changes the critical Rayleigh 
number applicable to natural convection. The analysis also yields an interesting 
mathematical result presented in $4.2: for this problem the Galerkin method 
yields an eigenvalue which is stationary to small changes in the trial functions, 
a feature usually associated only with variational principles. Here the result 
depends upon the equivalence between the Galerkin method and an adjoint 
variational method whenever the adjoint boundary conditions are the same as 
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the original boundary conditions, as is the case in a wide variety of convective 
instability problems. 

2. Derivation of equations 
The momentum equation for an incompressible fluid with constant viscosity 

is 
du 

P a = -  Vp’ +pg + V * (HB) +,uV2u, 

where p is the density, u the velocity, t is time, p f  the pressure (the magnetic 
contribution to pressure is discussed in the appendix), g the gravitational body 
force, ,u is the viscosity, H the magnetic field and B the magnetic induction. 
The additional term pertinent to a ferromagnetic fluid is the magnetic stress, 
which is derived by Landau & Lifshitz (1960), Cowley & Rosensweig (1967) 
and Penfield & Haus (1967). Two additional complications are assumed negligible 
in the above equation: we assume the viscosity is isotropic and independent of 
the magnetic field. Both approximations simplify the analysis without changing 
the ultimate conclusion. We also employ the Boussinesq approximation by allow- 
ing the density to change only in the gravitational body force term. 

The temperature equation for an incompressible fluid which obeys Fourier’s 
law is (see the appendix) 

where CvH is the heat capacity at  constant volume and magnetic field, T is 
temperature, M is the magnetization (defined by (4) below), k, is the thermal 
conductivity (assumed constant), and @ is the viscous dissipation. The partial 
derivatives of M are material properties which can be evaluated once the magnetic 
equation of state, such as (6) below, is known. 

Maxwell’s equations, simplified for a non-conducting fluid with no displace- 
ment currents, become 

In the Chu formulation of electrodynamics (Penfield & Haus 1967), the mag- 
netization, M, and magnetic field, H, are used as primary quantities rather than B 
and H. The three are related by 

V * B = O ,  V x H = O .  ( 3 a , b )  

B = ,uo(H+M). (4) 

We assume that the magnetization is aligned with the magnetic field, but allow 
a dependence on the magnitude of the magnetic field as well as the temperature 

H 
H 

M = - M ( H ,  T ) .  (5) 

The magnetic equation of state is linearized about the magnetic field, Ho, 
and an average temperature, T,, to become 

M = NO+X(H-HO)-K(T-T,), (6) 
48-2 
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where the susceptibility and the pyromagnetic coefficient are defined 

H, is the uniform magnetic field of the fluid layer when placed in an external 
magnetic field H = kH:xt. Thus the analysis is restricted to physical situations 
in which the magnetization induced by temperature variations is small compared 
to that induced by the external magnetic field. The density equation of state is 
taken as 

where the constant a is the thermal expansion coefficient. 
The magnetic boundary conditions are that the normal component of magnetic 

induction and tangential component of magnetic field are continuous across the 
boundary. The usual velocity boundary condition is u = 0 on a rigid wall and the 
temperature is assumed constant on each boundary. 

(8) P = Po(1- a P  - Ta)L 

T = To at x = i d ,  T = TI at x =  - i d ,  T, = 4(To+T,), 

where d is the thickness of the fluid layer. 
In the quiescent state, the solution of (1)-(8) is 

Ho = k ( Ho-- fc), M , = k  

Only the spatially varying parts of Ho and M, contribute to the analysis, 
so that the direction of the external magnetic field is unimportant and the 
convective phenomenon is the same whether the external magnetic field is 
parallel or antiparallel to the gravitational force. 

We next study the stability of this quiescent state with a linearized analysis. 
Equations (5) and (6) yield 

‘I (11) 
Hj+MA = (l+X)Hi-KT‘,  

H ; + N ;  = (l+M,/H,)H; ( i  = 1,2) , )  

where we have assumed K/3d < (1 + x )  H,. Equation ( 3 b )  means we can write 
H’ = V W .  The vertical component of the vorticity equation is 

az 
at 

p- = pV28, 

where Z = k (V x u). Since Z must vanish on the boundary, (12) predicts that 
any perturbation in vorticity must decay in time and in the instability analysis 
we set Z = 0 without loss of generality. As is customary in convective instability 
analyses we assume the normal mode hypothesis or separation of variables. 
Each variable is expanded in the form 

T’(x, y, x ,  t )  = T ( z ,  t)exp (ik,x + ik,y). 
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The vertical component of the curl of the vorticity equation is 

a - p - (D2 - k2) W = + k2ccpgT -’! [(x + 1)  DO - K T ]  k2 - p(D2- k2)2 W ;  (13) 
at 1+X 

the temperature equation is 

aT aD@ 
at at 

~ C - - , U ~ T K - = ~ ~ V ~ T +  

where pC = pCvH+poKHo, and (3a)  becomes 

(15) ( 1  + X) D2@ - (1  + Mo/Ho) k2@ - K D T  = 0. 

The boundary conditions on velocity and temperature are 

W = D W = T = O  at z =  k i d .  (16) 

The boundary conditions on the magnetic potential, O, are complicated 
by the fact that the periodic nature of @ within the fluid layer induces a periodic 
magnetic potential outside the layer. Thus outside the layer the magnetic 
potential is governed by 

This equation can be solved subject to (3), which takes the form, 

Y = @, DY = ( l + X ) D @ - K T  at z = k i d  

(0’- k2)  ‘P = 0. 

t o  obtain the boundary conditions on @: 

We next put (13)-(15) in dimensionless form by using the standards: 
W, = v / d ,  T, = pCpvd/(k,uRg), @, = KT,d/(l +x), z, = d,  t ,  = pd2/p. The final 
equations are 

I a 
- - (D2 - a2)W = - (D2 - u2)2 W + aR&[( 1 + Ml) T - MID@],  

at 

aT aD@ 
p -- PN,  __ = (D2 - a2)  T + aRt( 1 -M2)W,  

at at 

0 = D2@ - M,a2@ - D T ,  
where 

and a is the dimensionless wave-number. This set of equations must be solved 
subject to the boundary conditions (16) and (17) and the system reduces to 
an  eigenvalue problem for R. For the special case when buoyancy forces are 
negligible, the analogous equations can be obtained from (18) by replacing 
RbyN,andin(18a)setting(1+Ml)T = T,MIDO = DO.Thenthetemperature 
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perturbation is measured in units of T, = p C ~ v d / ( k , u N ~ ) ,  and the system 
reduces to an eigenvalue problem in N .  We note that the parameter MI is a 
ratio of the magnetic to gravitational forces. The parameter M3 measures the 
departure of linearity in the magnetic equation of state and values from one 
(M, = xH,) to higher values are possible for the usual equations of state. 

3. Exact solution for free boundaries 
We first consider the problem when the boundary conditions on velocity 

are changed to those appropriate to a free surface which is constrained flat. 
While this case is of little physical interest, it is mathematically important 
because we can derive an exact solution whose properties guide our analysis 
below. We consider here only the case in which x + 00. 

The boundary conditions are? 

W = D Z W = T = D O = O  at z =  -1-4. 
The solution can be separated into even and odd modes and we expect the even 
modes give the lowest eigenvalue. Consequently, we consider solutions in which 
W ,  T and DO are even, but O is odd and symmetric about x = 0. The exact 
solution is then W = Aedcosnz, T = Beotcosm, 

DO = Ceut cos m, O = + (C/m) eUt sin r z .  

These functions are substitut'ed into the set of equations (18), which can be 
satisfied provided the constants A ,  B and C are chosen appropriately. We 
thus obtain a set of three linear, homogeneous algebraic equations in the constants 
A, B and C. A solution exists if and only if the determinant of the coefficients 
vanishes, leading to the characteristic equation 

uf72+ V g +  w = 0, 
where 

U = P(++ u') [+( 1 - M,) + LW~U~], 
V = ( ~ z + ~ 2 ) 2 [ ( l + P ) ( ~ 2 + M 3 ~ 2 ) - P M ~ ~ r 2 ] ,  1 (19) 

W = ( ~ T ~ + u ~ ) ~ ( T ~ + M ~ u ~ ) - u ~ R ( ~ - M , )  [(I+M,)  (nz+M3a2)-n2MJ. 

This equation determines the eigenvalue R for which solutions exist. If neutral 
oscillatory instability occurs the time factor = iw. Since the functions U ,  V 
and W are all real, (19) can be satisfied for = iw, only if ?' = 0. Typical values 
of Mz are + so that V is positive and oscillatory instability cannot occur. 
For stationary instability (and H, 2: 0) the Rayleigh number is given by 

(772 + 4 3  R =  
u2[1 +MI - MJnz/[nz  + M,u'])] ' 

t The free stress boundary condition must be generalized to include the Maxwell 
stress terms HB. However, because of the boundary conditions applicable to H and B, 
the additional terms drop out, leaving only D2W = 0. 
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which must be minimized with respect to the wave-number to find the critical 
Rayleigh number. 

When MI = 0 we get the classical Rayleigh problem for buoyancy-induced 
convection with a: = in2 and R, = 7 m 4 .  For MI very large, we obtain the 
results for the magnetic mechanism operating in the absence of buoyancy effects. 

( ~ z _ t a ~ ) ~  (n2+M3a2) 
M3 a4 

N = R M , =  

The critical wave-number and magnetic number, N,, depend on the parameter 
N3, taking the values 

N, = 167r4, a," = n2 for M, = 1, 

and N, = Z 3 4 ,  a2 , - - - in2 for M3+m 

and intermediate values for intermediate M,. If we write N, = Kn4, where K 
depends on H,, we can rearrange (20) to demonstrate the interaction of the 
buoyancy and magnetic modes of instability. 

where X = a/.. When M3 is very large (21) reduces to 

This result demonstrates B tight coupling between the buoyancy and magnetic 
forces which is possible because each individual convective mechanism yields 
the same wave-number. Such tight coupling is reminiscent of that obtained 
in the combined buoyancy and surface tension instability discussed by Nield 
(1964). It holds here only for special values of the parameters; otherwise ( 2 2 )  
must be used. Numerical results concerning the coupling are deferred until 
treating two rigid boundaries, where the numerical results are of more interest 
physically. 

4. Solution for rigid boundaries 
4.1. Galerkin method 

For rigid boundaries and a finite x we must consider oscillatory instability. 
The first approximation of the Galerkin method, however, if applied in the 
manner described by Finlayson (1968), yields a result similar to (19), suggesting 
that oscillatory instability does not occur even for the more general boundary 
conditions. Thus we limit consideration to stationary instability. 

The set of equations (18), simplified for stationary instability and with 
Mz = 0,  can be conveniently represented in matrix notation 

L-W = aR*M-W, (23) 
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w = { w, T, @}, 

( 0 2  - .2)2 0 0 
L = j  0 - (D2 - a2)  0 

0 D - ( 0 2 -  dN3) 

0 

The set of equations is invariant under the transformation z+ -2, W -+ W ,  
T+ T, @ -+ - @, so that the exact solution, represented as a power series, con- 
tains only even powers of z for velocity and temperature and only odd powers of z 
for the magnetic potential. Numerical values of the eigenvalue are obtained 
using the Galerkin method by expanding the velocity, temperature and magnetic 
potential in the series 

N N lV+2 

i= 1 i=l i=l 
J$’ = C A,(z2-$) i+ l ,  T = 2 B i ( z 2 - l ) i  4 5  @ = C ciz2f--l. 

The velocity and temperature trial functions satisfy the boundary conditions, 
( l 6 ) ,  whereas the magnetic potential does not satisfy its boundary conditions 
( 1  7 ) .  These functions are substituted into (23) to obtain the residuals. The velocity 
equation is required to be orthogonal to each velocity trial function (9- &)i+l, 

and the temperature equation is made orthogonal to each temperature trial 
function. For the magnetic potential we must include boundary residuals in the 
following way. Define the differential equation and boundary residuals as 

RD = (D2 - a2M3) @ - D T ,  

R B ( + ) = -  

The combined inner product is set to zero 

(@jRD)+@j(+):R,(+)+ @j(-$)Ru(-i$) = 0, 

( U V )  = uvaz. s”, where 

Upon integrating the first term by parts we find that the part of the boundary 
residual involving derivatives is cancelled. This corresponds exactly to the 
use of natural boundary conditions in the calculus of variations. Such a tech- 
nique for the Galerkin method is not widely recognized, although it has been 
used before (Bolotin 1963; Mikhlin 1964). If these manipulations are carried 
out, we obtain a set of homogeneous linear equations in the expansion co- 
efficients of the trial functions. This set of equations has a solution if and only if 
the determinant of the coefficients vanishes, which leads to a characteristic 
equation to be solved for the eigenvalue, R.  
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4.2. Adjoint variational method 

Before discussing the numerical results we show that the Galerkin method 
is equivalent, in this case, to an adjoint variational principle. Thus the eigen- 
value is stationary. The adjoint operator is defined by requiring that 

{W*.(L-aR4M).W-W.(L*-aR*M*).W*) = boundary terms = 0 

and the result is L* * W* = aRBM* * W", 

(D2 - 0 0 
where L * = j  0 - ( 0 2  - a2) 

0 0 - ( 0 2  - a2M3) 

0 

(24) 

The adjoint boundary conditions are the same as the original boundary conditions. 
An adjoint variational principle can be derived in the manner suggested by 
Roberts (1960) and Chandrasekhar (1961). The functional 

(W*. LOW) aRt = ~ - _ _ _  
{W** M - W} 

is to be made stationary among all possible variations of the trial functions 
W and W*. It is easily seen that the Euler equations are just (23) and (24). 

We next consider the application of this adjoint variational principle, but 
use a single equation rather than a system of equations for simplicity. Then 

E --A. {u* Lu) 
{u*, Mu}' 

We expand the functions u and u* in the series 

u = zciui, u* = cc,"u," 

Application of the variational principle yields 

Yet the matrices in these equations are transposes of each other, after we use 
the property of the operators {u;, Luj} = (uj, L*uz} and similarly for M .  
Furthermore, when the first set of equations has a non-trivial solution, so does 
the second set. Consequently, if we apply the Galerkin method but use as weight- 
ing functions {ug} rather than {uk}, then the result corresponds to an adjoint 
variational principle. The eigenvalue is stationary and we expect a good approxi- 
mation because first-order errors in approximating u contribute only second-order 
errors in approximating the eigenvalue A. 
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In the problem at hand the adjoint boundary conditions are the same as 
the original boundary conditions, so that we can choose WT = T, etc. Then the 
Galerkin method as applied above is equivalent to application of an adjoint 
variational principle and the eigenvalue is stationary. This same stationary 
feature of the Galerkin method is true in other convective instability problems 
whenever the non-self-adjointness arises from the differential equations rather 
than the boundary conditions. Thus the eigenvalue is stationary, although the 
authors do not state this, in the Galerkin calculations done by Krueger & DiPrima 
(1964), Kurzweg (1964), DiPrima & Pan (1964), Walowit (1966) and Ritchie 
(1968) for various modifications of the stability of Couette flow between rotating 
cylinders. 

4.3. Numerical results 

The results of applying the Galerkin method to (23) are given in table 1 and 
figures 1 and 2. Results for the third approximation are shown and these generally 
differed from the second approximation by less than +yo. For the buoyancy 
problem with no magnetic field (MI = 0 )  the successive approximations to Ray- 
leigh number are 1750, 1708.80, 1707.77, compared to an exact value of 1707.762 
(Chandrasekhar 1961). 

1 + x  M3 

1 1 
2 
3 
4 
7 

10 
15 
25 

3 1 
2 
3 

5 1 
2 

Nc 
2570 
2270 
2130 
2050 
1920 
1870 
1820 
1780 
2800 
2360 
2180 
2880 
2380 

a, 
3.6 
3.6 
3.5 
3.4 
3.3 
3.3 
3.2 
3.2 
3.8 
3.6 
3.5 
3.9 
3.6 

1 + x  M ,  Nc a, 
3 2190 3.5 

10 1 2960 3.9 
2 2410 3.7 
3 2020 3.5 

104 1 3050 4.0 
2 2440 3.7 
3 2220 3.6 
4 2100 3.5 
7 1940 3.3 

10 1870 3-3 
15 1820 3.2 
25 1780 3.2 

TABLE 1. Critical stability parameter in the absence of buoyancy forces 

The results applicable to the magnetic convection mechanism alone are shown 
in table 1 and figure 1. The parameters M,, representing the departure of the mag- 
netic equation of state from linearity, and x, arising in the magnetic boundary 
condition cause the critical magnetic number to vary between the limits 1708 
and 3050. As the equation of state becomes more non-linear (M, large) the fluid 
layer is destabilized slightly. Eventually the entire problem reduces to the classical 
Rayleigh problem with N, = 1707.8, as M,+co. 

When both magnetic and buoyancy forces can cause convection, the Rayleigh 
number depends on MI, or, equivaIently, the critical Rayleigh number and 
magnetic number, N = M,R, are coupled. For free boundaries we derived the 
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M 3  

FIQURE 1. Critical stability parameter for magnetic convection mechansim as a function 
of parameters M ,  and 2. Curve: a, 1+x = 1; b, 1+x = 5 ;  c, x +- a. 

NINC 

FIQURE 2. Effect of the magnetic mechanism on the Rayleigh number. Curve: a, M ,  + co; 
b, M ,  = 1, 1+x = 104. Values for M ,  = 1, 1+x = 1; M ,  = 3, 1 + x  = 1; Ma = 1, 
1 + x = 5 are between curves a and b .  
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exact form of the coupling in (22). For the present case of rigid boundaries we 
can no longer derive an exact result, but the first approximation of the Galerkin 
method gives suggestive results. The equations governing the first approximation 
can be rearranged into the form 

where 

As M3 approaches infinity, f, K and g each approach one and we obtain 

R N  

K+N, = l .  
(27) 

The two convective mechanisms are tightly coupled because they have the same 
wave-number. For instability, an increase in the forces due to one mechanism 
makes possible a proportional decrease in the forces due to the other mechanism. 
It is also clear from the equations that as x becomes large it has less influence 
on the solution. For higher approximations the exact form of the relationship 
suggested by (26) must be determined numerically, and the results are shown 
in figure 2 .  Even for a wide change in parameter values (27) is followed rather 
closely. 

5. Discussion of results and conclusions 
We sec that the magnetic mechanism alone can induce convection provided 

the critical stability parameter, N,, defined after (18), is above a critical value, 
which depends on the magnetic equation of state. Consequently, if a ferro- 
magnetic fluid is placed in a fluid layer with a uniform vertical magnetic field, 
convection will be induced provided the temperature gradient is large enough. 
We note that the magnetic convection mechanism requires both thermal and 
magnetic interactions with the surroundings. The mechanism, depending as it 
does upon the temperature dependence of the magnetic equation of state, is 
similar to that reported by Poots (1963), Yeung & Yu (1968) and Turnbull 
(1969) for inducing motion of a dielectric fluid when it is heated and the dielectric 
coefficient is a function of temperature. 

To determine the magnitude of the temperature gradient necessary to experi- 
mentally verify the phenomenon, we need to know the magnetic equation of 
state as a function of external magnetic field and temperature. Dependence on 
magnetic field is given for typical ferromagnetic fluids by Cowley & Rosensweig 
(1967). The saturation magnetization as a function of temperature is given by 
Rosensweig & Kaiser (1967). If we use an external magnetic field of several 
thousand oerstead (1 oerstead = 103/4n A/m), which is sufficient to saturate 
most ferromagnetic fluids, then 1 +x N 1, M3 N 1. The value of K reported 
by Rosensweig & Kaiser (1967) is K = 0.03 gauss/"C ( = 30 Ajm "C) for magnetite 
in kerosene. Using values of viscosity, thermal conductivity, density, heat capa- 
city and coefficient of expansion appropriate to the pure fluids water, kerosene 
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and n-heptane at 20°C, we obtain the temperature differences shown in table 2 
required to cause motion by the buoyancy mechanism and by the combined 
magnetic and buoyancy mechanism. For such fluids only in thin fluid layers 
does the magnetic mechanism influence the results. The magnetic forces can be 
increased by increasing K ,  either by using higher concentrations or by suspending 
a solid with a higher value of K.  In very thin layers (less than 1 mm for the fluids 
described in table 2) only the magnetic forces contribute to convection. 

Water Kerosene n-Heptane 
7- -7 

Buoyancy Buoyancy Buoyancy 
d Buoyancy and Buoyancy and Buoyancy and 

(om) alone magnetic alone magnetic alone magnetic 

1 0.1 0.1 0.05 0.05 0.008 0.008 
0.5 0.9 0.9 0.4 0.4 0.06 0.06 
0.2 15 7 6 5 1 1 
0.1 120 17 51 19 8 5 

TABLE 2. Temperature differences required to induce convection 

In  conclusion, we see that convection can be induced in a ferromagnetic 
fluid by means of a spatial variation in magnetization which is induced when the 
magnetization of the fluid depends on temperature and a temperature gradient 
is established across the layer. Only in thin layers ( N 1 mm) will the magnetic 
mechanism predominate over the buoyancy mechanism. This problem represents 
a new mode of thermo-mechanical interaction arising through the stress tensor, 
and convective instability theory provides a powerful method of studying such 
thermo-mechanical interaction. 

The author would like to thank Otto C. Faber of NASA, Lewis Research 
Center for many helpful comments about the properties of ferromagnetic fluids. 

Appendix 
The temperature equation for a magnetizable media is derived by combining a 

thermodynamic treatment with the treatment of the electrodynamics of moving 
media as presented by Penfield & Haus (1967). We write the total differential for 
internal energy when it is a function of the independent variables: entropy, 
specific volume and magnetization: 

dU = TdX-p'dV+poH*dI. (A 1) 

This is equation (4.120) of Penfield & Haus (1967, p. 85) after changes in notation. 
The internal energy per unit mass is U ,  entropy per mass is X, V is specific 
volume, I = M V ,  and the pressure includes a magnetic contribution in addition 
to the usual thermodynamic pressure arising in the absence of magnetic fields. 
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In  an incompressible fluid, of course, the pressure is indeterminant. We assume 
that (A 1) is valid in a convected co-ordinate system: 

dU dS dV d I  
dt dt dt at - - = F--pr-+poH*- 

The continuity equation gives 
dV V - v  
a t -  p *  

Following Penfield & Haus as well as Landau & Lifshitz (1960) we postulate 
the entropy equation 

(A4) 
dS 
dt 

pT- = - V . q + @ ,  

where q is the heat flux and CD is the viscous dissipation. Combining (A 2)-(A4) 
yields an equation for internal energy. 

The remainder of the analysis uses standard techniques of thermodynamics 
to convert this equation to a temperature equation. 

The entropy and magnetic differentials in ( A l )  are written in terms of the 
independent variables T ,  P, H. The coefficients involving entropy derivatives 
are evaluated using Maxwell relations obtained from a modified free energy 
A’ = U - TJ’-,uoH - I .  The results, substituted into (A5), give 

= -V-q+@--T($$ V a v ,  (A6) 
V ,  H 

where 

and (A 6) represents the temperature equation for a ferromagnetic fluid. For an 
incompressible fluid obeying Fourier’s law we get (2). This equation differs 
slightly from that derived by Neuringer & Rosensweig (1964) and Resler & 
Rosensweig (1967), but the only difference is the second term in the brackets, 
which is usually negligible. 

The temperature equation can also be derived by beginning with the free 
energy expression given by Cowley & Rosensweig (1967, equation ( A l ) )  in 
place of (A 1) here. With 

w, T ,  B )  = E6(P, T )  +pW, T ,  B)dB, 

the temperature equation is 

where C,, = (aU/aT),  B. It can be shown that this is equivalent to (As). 
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